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Abstract: 

The present study builds a spatial statistical model for estimating land use maps. Many approaches for modeling land 

use maps exist in the literatures. A representative method includes a multinomial logit model (Miller and Plantinga, 

1999), in which the likelihood of placing each land use category, such as land for building and forest, into each zone 

is explained by selected attributes such as population and elevation. Because neighboring zones tend to be 

categorized into the same land use class, considering spatial dependence among zones is important when applying a 

multinomial logit model for modeling land use maps. Although previous studies involving spatial econometric 

techniques attempted to consider spatial dependence by using a spatial weight matrix, such methods require a 

computationally burdensome iterative calculation for parameter estimation (e.g., the expectation-maximization 

algorithm or the Markov chain Monte Carlo method). On the contrary, the present study employs eigenvector-based 

spatial filtering based on a spatial statistical approach, in which parameters are estimated using the standard 

maximum likelihood method for modeling spatial dependence. This is easy to implement using standard statistical 

software packages. Moreover, while analyzing land use, it is essential that the filtering method enable visualization of 

secular changes in spatial patterns influencing the choice of each land use category at each instance. The results 

suggest that compared to conventional nonspatial multinomial logit models, the predictive power in terms of the 

Akaike information criterion (AIC) is substantially improved with spatial filtering. 
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1. Introduction 

It is vital to deal appropriately with spatial dependence and spatial heterogeneity when 

using regression models dealing with spatial data (Anselin, 1988). In recent years, studies on spatial 

statistics and spatial econometrics have made a number of suggestions on how to consider spatial 

effects on qualitative data (e.g., McMillen, 1992; Congdon, 2005; LeSage, 2000; Chakir and Parent, 

2009; Higgs and Hoeting; 2010; Wang et al., 2012)
1
. However, the suggested methods typically 

require a computationally burdensome iterative calculation for parameter estimation such as 

expectation-maximization algorithm or the Markov chain Monte Carlo (MCMC) method
2
. Also, the 

models for “multinomial” discrete choice models are still ongoing (Smirnov, 2010), and methods are 

not well established. 

Hence the present paper takes another way, namely eigenvector-based spatial filtering 

(ESF) developed by the work of e.g., Griffith (2003), in which spatial dependence can be considered 

only by introducing eigenvectors of a modified spatial weight matrix as the explanatory variables. 

The advantage of this approach is its ease in practical implementation because the method does not 

requires a special parameter estimation technique and can be used with standard statistical software 

packages after selecting eigenvectors (e.g., Griffith and Paelinck, 2011). The modified spatial weight 

matrix has direct relationship to the well-known Moran’s I statistics, and therefore significant merits 

in interpretation. Linear combinations of the selected eigenvectors and their estimated coefficients 

can be interpreted as potential explanatory variables substituting for missing variables as well as map 

patterns.  

Hence in this study, we apply ESF to a multinomial logit model, and compare the 

predictive accuracies of land use categories in terms of Akaike Information Criterion (AIC) and hit 

ratio to the standard non spatial model. In addition, linear sum of the eigenvectors and its 

coefficients are calculated for each category, and the interpretation of the result is discussed in detail. 

This paper constitutes as follows. Section 2 describes ESF. Section 3 applies ESF to a 

multinomial logit model, and conducts the empirical analysis with the land use data in Ibaraki 

prefecture, Japan. Finally, Section 4 discusses the potential and challenges of the proposed method 

and concludes the study.  

 

 

2. Estimation of Land Use with the Eigenvector-based Spatial Filtering  

Thus far numerous models for modeling land use have been proposed (Koomen et al., 

2007; Irwin, 2010), and one of the representative approaches are using multinomial logit model (e.g., 

                                                   
1
 Smirnov (2010) gives excellent reviews for such methods. 

2
 Smirnov (2010), Kiler and McMillen (2008) proposed a spatial multinomial logit model not based 

on iterative algorithm, but these methods are based on weak positive spatial autocorrelation. 



Miller and Plantinga, 1999). Although critics argue that the logistic transformation is ad hoc, the 

practical advantages seem to outweigh the conceptual shortcomings (Miller and Plantinga, 1999). 

Because neighboring zones tend to be categorized into the same land use class, considering spatial 

dependence among zones is important when applying a multinomial logit model for modeling land 

use (e.g., Wang et al., 2012). In this study, we apply ESF to a multinomial logit model in order to 

consider spatial dependence
3
. 

As mentioned earlier, Moran’s I statistics is often used as a representative of spatial 

dependence. Moran’s I statistics is defined as 
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where, n is the number of samples, 1 is the n × 1 vector of 1s, I is the n × n identity matrix, y is the n 

× 1 vector of observations, C is the n × n proximity matrix, and (I - 11’/n) is a projection matrix. For 

simplicity, C is treated as adjacency matrix. Griffith’s (e.g., 2000, 2003) methodology exploits 

eigenvector decomposition techniques, which extract orthogonal and uncorrelated numerical 

components from an (I - 11’/n) C (I - 11’/n).   

The basic model which we build for ESF in a multinomial logit model is given by  
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Here, Uj is the n × 1 vector of the utility for option (land use category) j, X is an n × k explanatory 

variable matrix, and E is an n × r eigenvector matrix whose elements are calculated from the 

proximity matrix, βj is a k × 1 parameter vector, γj is a r×1 parameter vector. εj is the n×1 error vector, 

and is independent and identically Gumbel distributed.  

 The selection probability Pij of each option in each mesh i is given by  
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The option which has the highest utility is selected in each zone. The parameters βj and γj can be 

estimated by the maximum likelihood method (Train, 2003).  

                                                   
3
 We noticed that Wang et al. (2013) employed ESF for land use data, but their focus is no binary 

data. 

(1) 

(2) 

(3) 



3. Application of Eigenvector-based Spatial Filtering to a multinomial logit model 

In section 2, we built the model for ESF in a multinomial logit model. Therefore, in 

section 3, we conduct a case study which we apply the model for a land use data in. 

Ibaraki prefecture (Figure 1), which is located in the northeast of Tokyo Metropolitan area, 

Japan, was selected for our case study. Some major cities in Ibaraki prefecture include Mito city, 

which is the seat of prefectural government, and Tsukuba city, which is central city of the southern 

region. The Distances from Tokyo station to Mito and Tsukuba stations is approximately 100km and 

60 km, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Location of Ibaraki prefecture 

 

We compare the predictive accuracy of the multinomial logit model with ESF (Spatial) 

with the conventional non-spatial multinomial logit model (Non-spatial). Our target period is 2006 

year. The land use data used in this study is available through the National Land Numerical 

Information Services (URL: http://nlftp.mlit.go.jp/ksj-e/index.html) (Figure 2). The area of each 

mesh block is approximately 1 km
2 

(1 km x 1 km). For the modeling, we aggregated the land use 

categories as shown in Figure 3. Some categories (e.g., rivers and lakes) are excluded from this 

study; if the occupied area of the land use classification is equal, we exclude the same from this 

study. Some other categories (e.g., wasteland, golf course) have been aggregated into “other Land,” 

“Paddy Field,” “Other Agricultural Land,” “Forest,” and “Land for Building” are considered as is. In 

order to classify each mesh into an appropriate category, we classify it depending on the largest land 

http://nlftp.mlit.go.jp/ksj-e/index.html


use classification for that particular mesh. Further, since the estimation accuracy is improved by 

considering stable points in the field during estimation and prediction (Osaragi, 1996). 

The explanatory variables include elevation, slope and a water zone dummy as the 

geographical conditions, and population, distance to the nearest station, distance to Tokyo Station as 

the social conditions. The data for elevation, slope, straight line distance to Tokyo Station, and the 

straight line distance to the nearest station were sourced/derived from the National Land Numerical 

Information Services and only total population is sourced/derived from the 2005 census, which is 

available online from the Ministry of Internal Affairs and Communications Statistics Bureau (URL: 

http://www.e-stat.go.jp/SG1/estat/eStatTopPortalE.do, accessed June 20, 2013.). We measure the 

straight line distance to the nearest station and Tokyo station from the center of gravity of the mesh 

(in meters). We used the only station that was operational in fiscal year 2006 after consulting the 

railway time-series data from the digital national land information data for every station. In addition, 

in the present study, we use selected eigenvectors as the explanatory variables in order to consider 

spatial autocorrelation. We limit the number of eigenvectors to 150 in order to reduce computation 

time. 

 

Figure 2: Land use of Ibaraki prefecture depicted in the 1km
2
 mesh (2006) 
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Figure 3: Aggregated land use classification for this study 

 

 

Table 1 shows the parameter estimation results of each explanatory variable. The variables 

are significant and display the expected signs. However, certain variables are significant nonspatially, 

but not significant spatially. This could be attributed to a bias introduced by due to excluding the 

spatial dependence. In order to check which model is better, we calculated the AIC. In addition, we 

employ the hitting ratio as another indicator, to assess which model is better (Table 2). Table 2 shows 

that the AIC is smaller for the spatial model, in spite of our adding 150 eigenvectors to the 

explanatory variable. Figure 4 and 5 illustrates the spatial distribution for both models. The 

nonspatial model cannot capture a spatially heterogeneity, such as the southeast area which is mixed 

in various land use classification. 

The spatial distribution of each choice extracted from the ESF may be represented as linear 

combinations of parameters and eigenvectors. Figure 6 shows the spatial distributions as described 

by the combination in sections 1 to 10. Because Moran’s I statistic quantity is relatively big among 

the eigenvectors ranked sections 1 to 10, the eigenvectors depict the spatial patterns global basis 

spatial distribution of Figure 6. For example, looking at the spatial distribution of land for building, 

it can be seen that the map captures the character of prosperous area which is the north or south 

region which indicates the value high. And also, although analysts have to pay attention to the 

possibility that a choice of based alternative which we use in estimation process changes spatial 

pattern, a comparison between each spatial pattern can be possible.  
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Table 1: Parameter estimation results 

Explanatory Variable Choice Coefficient 

Spatial   
Nonspatial Spatial 

Intercept Other Agricultural Land –1.19 
 

*** –4.05 
 

*** 

 
Forest –3.59 

 

*** –4.84 
 

*** 

 
Land for Building –4.12 

 

*** –7.66 
 

*** 

 
Other Land –3.66 

 

*** –4.95 
 

*** 

Population Other Agricultural Land 2.54 ×10–4 *** 7.17 ×10–4 *** 

 
Forest –1.32 ×10–3 *** –8.04 ×10–4 *** 

 
Land for Building 2.66 ×10–3 *** 3.32 ×10–3 *** 

 
Other Land 6.87 ×10–4 *** 4.02 ×10–4 *** 

Average Elevation Other Agricultural Land 4.10 ×10–2 *** 1.20 ×10–1 *** 

 
Forest 4.47 ×10–2 *** 1.37 ×10–1 *** 

 
Land for Building 2.85 ×10–2 *** 7.70 ×10–2 *** 

 
Other Land 4.40 ×10–2 *** 1.28 ×10–1 *** 

Average Slope Other Agricultural Land –5.60 ×10–1 *** –8.03 ×10–1 *** 

 
Forest 3.99 ×10–1 *** 1.96 ×10–1 *** 

 
Land for Building –2.33 ×10–1 *** –5.10 ×10–1 *** 

 
Other Land –5.67 ×10–1 *** –2.46 ×10–1 *** 

Water Zone Dummy Other Agricultural Land –1.09 
 

*** –5.95 ×10–1 *** 

 
Forest –1.20 

 

*** –7.02 ×10–1 *** 

 
Land for Building –2.15 ×10–1 *** 7.35 ×10–3 *** 

 
Other Land –5.46 ×10–1 *** –1.28 ×10–1 *** 

Distance to Tokyo Station Other Agricultural Land 5.70 ×10–6 *** 2.72 ×10–6 * 

 
Forest 1.79 ×10–5 *** –2.03 ×10–6 

 

 
Land for Building 2.31 ×10–7 

 
2.01 ×10–5 *** 

 
Other Land 6.03 ×10–6 *** 1.46 ×10–5 *** 

Distance to the Nearest Station Other Agricultural Land 9.70 ×10–5 *** 1.57 ×10–4 *** 

 
Forest 9.89 ×10–5 *** 6.13 ×10–5 *** 

 
Land for Building 1.46 ×10–5 

 
2.37 ×10–5 

 

 
Other Land 1.50 ×10–4 *** 2.19 ×10–4 *** 

***, **, and * indicate significance at the 1%, 5%, and 10% level respectively. 

 

Table 2: Comparison of predictive values 

  Nonspatial Spatial 

AIC 8989.3 7614.6 

Hitting ratio [%] 71.7 79.1 

 

 

 

 

 



  

Figure 4: Estimated land use choice result of Nonspatial (left)/Spatial (right) 

 

  

Figure 5: Comparison of map pattern of Hit/Miss of estimated choice  

of Nonspatial (left)/Spatial (right) 
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4. Conclusion 

This study built a model of eigenvector-based spatial filtering in a multinomial logit model 

and applied the model to land use data. The estimation results suggest that compared to conventional 

nonspatial multinomial logit models, the predictive power in terms of the Akaike information 

criterion and hitting ratio is substantially improved with spatial filtering. Moreover, although 

analysts have to pay attention to the possibility that a choice of based alternative which we use in 

estimation process changes spatial pattern, a linear combination of eigenvectors and their parameters 

enable visualization of spatial patterns influencing the choice of each land use category.  

The comparison of technique of spatial econometrics and spatial statistical in order to consider 

spatial effect in analyzing land use is needed for future work. Although The basic model of 

eigenvector-based spatial filtering is decomposition of the spatial lag model which is the basic model 

of spatial econometric method (Tiefelsdolf and Griffith, 2007), this study dealt with only spatial 

statistical approach which eigenvector-based spatial filtering method is classified as (Griffith and 

Paelinck, 2011). It would be of our future work to examine whether model would be good in terms 

of computation burdensome and accuracy of estimation.   
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