Composite Input-Output Production Functions

An algorithm to linear combination of subsector cost shares

Randall Jackson

RRI TechDoc 2013-02r1

Date Revised: 8/9/2013

Key Words/Codes: IO
Composite Input-Output Production Functions

Abstract. This document describes the algorithm used for creating an aggregated linear production function for an industry by weighting subsector production functions. The result can be used as a column in an interindustry (IxI) coefficients table or in a standard Use table (CxI) depending on the units (C or I) of the input data.

Introduction

Each power generating technology \(k \in K \) has a corresponding production function. When the production function is assumed to be linear, each technology’s production function corresponds to a set of cost shares whose sum over all inputs is 1. Define

\[
A_j^k = \begin{bmatrix}
 a_{ij}^k \\
a_{ij}^k \\
\vdots \\
a_{n-1j}^k \\
a_{nj}^k
\end{bmatrix}
\]

be the cost shares for technology subsector \(k \) in power generation industry \(j \). Then let \(Z_j^k \) be the contribution of subsector \(k \) to industry \(j \) output. \(Z \) can be expressed in dollar terms or in proportionate weights. The industry \(j \) composite cost shares can be computed as

\[
A_j = \frac{\sum_{k=1}^{K} A_j^k Z_j^k}{\sum_{k=1}^{K} Z_j^k}
\]

In matrix notation, \(A \) is a normalized cost or cost share matrix with \(N \) industries and \(K \) technologies, \(z \) is a \(K \) dimensional vector of the weights of the respective sectors in the composite sector, \(x \) is the sum of the weights, and \(i \) is an appropriately dimensioned summing vector. Then the compositing function is

\[
\left(\frac{1}{z_i} \right) A^z_i
\]
Supporting Algorithm(s)/Code.

function [t] = techagg(A,z)
% PURPOSE: create an aggregated input–output column from subsectors,
% given subsector coefficient matrix and weights vector
% ---
% USAGE: t = techagg(A,z)
% where A is an nxk matrix of coefficient cost shares
% and z is a k dimensional vector of weights, either shares or
% levels
% INPUT:
% -> A is an nxk matrix of coefficient cost shares
% -> z is a k dimensional vector of weights, either shares or levels
% OUTPUT:
% -> t is an n dimensional vector of aggregate cost shares
% ---
% REFERENCES: None
% ---
% Written by: Randy Jackson, 08/07/2013
% Current e-mail: info@econalyze.com

wtsum=sum(sum(z)');
t=(A*diag(z)/wtsum)*ones(length(z),1);

% ---